It was noted that γ -basic lead azide I yielded absorption features for the azide grouping and for lead-oxygen bonding only. There was no evidence whatsoever for absorption due to the hydrogen-oxygen bond so that complete absence of hydroxyl ion and water of crystallisation must be concluded.

The results of this work indicate that γ -basic lead azide I is an oxyazide which does not conform to the formulation $Pb(N_3)_2 \cdot PbO$. Such a formula should yield analytical figures for lead and nitrogen of 80.6% and 16.3% and although the lower analytical figures for our two preparations could indicate an impure product, a complex of approximate formula $Pb(N_3)_{0.96} O_{0.66}$ is considered likely.

Results to date indicate that in any assessment of the purity of a γ -basic lead azide I sample by chemical methods, the lead and azide figures should be at least 80.3% and 15.6%, respectively. Frequent impurities are basic lead carbonate and normal lead azide. It is worth noting that the presence of basic carbonate will lower the azide figure without affecting the lead figure substantially whereas the presence of normal azide will lower the lead figure and raise the azide figure. The return of an acceptable azide figure but a low lead figure may indicate the presence of both basic lead carbonate and normal lead azide as impurity.

The authors wish to thank members of the staff of ERDE and RARDE for the supply and chemical analysis of samples of basic lead azide.

BIBLIOGRAPHY

- [1] W. Feitknecht & M. Sahli, Helv. 37, 1433 (1954).
- [2] W. Feitknecht & M. Sahli, Helv. 37, 1431 (1954).
- [3] G. Todd & E. Parry, Nature 202, 386 (1964).
- [4] G. Todd, Chemistry & Ind. 1958, 1005.
- [5] G. Todd & M. P. Tasker, unpublished work, 1971.
- [6] G. Todd & E. Parry, Nature 196, 250 (1962).

244. Infrared Spectra of α-Thenoyl-trifluoroacetonates of Metal Ions of the First Transition Series

by G.S. Shephard and D.A. Thornton¹)

Department of Chemistry, University of Cape Town, Rondebosch, Cape, South Africa

(14. V. 71)

Summary. The IR. spectra of α -thenoyl-trifluoroacetone (HTTA) and seventeen of its chelates with metal(II) and -(III) ions of the first transition series have been determined. Three series of complexes are represented: the anhydrous metal(II) species, $[M(TTA)_2]_n$ (M = Ca, Mn, Co, Ni, Cu, Zn); metal(II) dihydrates, $[M(TTA)_2(H_2O)_2]$ (M = Mn, Fe, Co, Ni, Zn); and the metal-(III) chelates, $[M(TTA)_3]$ (M = Sc, V, Cr, Mn, Fe, Ga). For each metal(II) complex, the spectra of the anhydrous and hydrated compounds are practically identical, suggesting that the anhydrous complexes have the polynuclear octahedral structure established for the corresponding acetylacetonates. Magnetic moment determinations reveal that complexes of the $3d^4-3d^7$ ions all have

2212

On leave during 1971 for study at the Laboratorium f
ür anorganische Chemie, Eidg. Technische Hochschule Z
ürich.

spin-free configuration. Several vibrational bands with frequencies $<700 \text{ cm}^{-1}$ are found to exhibit a frequency variation with *d*-orbital population which is consistent with the order of crystal field stabilization energies and hence with their assignment as coupled metal-oxygen stretching modes. Unique features of the spectra of $[Cu(TTA)_2]$ and $[Mn(TTA)_3]$ are ascribed to structural differences arising from *Jahn-Teller* distortion. Tentative assignments for the majority of the ligand vibrations are given.

Introduction. – The majority of reports on metal α -thenoyl-trifluoroacetonates relate to their rôle as synergists in the solvent extraction of metal ions by phosphorus esters [1] [2]. Although many of the complexes have been isolated, no systematic study of their spectroscopic properties has been reported. Here we report on the IR. spectra of all the preparatively-accessible TTA-complexes I, II and III of the metal(II) and -(III) ions of the first transition series.

Experimental. – The complexes were prepared by the general method previously reported [3] except that either the metal acetate, chloride or nitrate, buffered with sodium acetate, was employed. Adjustment of the pH of the solution to 6 is necessary for precipitation of the Ca^{II}, Sc^{III} and Ga^{III} complexes. This method yields the dihydrates of the metal(II) complexes except for those of Ca^{II} and Cu^{II}, obtained only in the anhydrous form. Dehydration of the Mn^{II}, Co^{II} and Zn^{II} complexes is accomplished within 3 h at 110°/0.2 Torr, that of the Ni^{II} complex requires 5 h at 180° at this pressure. The Mn^{III} complex was prepared from Mn^{III} acetate by an analogous procedure to that described for the tropolonate [4]. The V^{III} complex is very susceptible to oxidation and was prepared and handled throughout under dry nitrogen. The Ca^{II}, Sc^{III}, V^{III}, Mn^{III} and Ga^{III} complexes are believed to be reported for the first time.

IR. spectra were determined on a *Beckman* IR-12 spectrophotometer calibrated against carbon dioxide and water vapour. Samples were in the form of Nujol mulls between caesium bromide or (below 350 cm⁻¹) caesium iodide plates. For maximum precision, frequencies were read from the wave-number drum, not the chart paper. Replicate spectra yielded a maximum discrepancy of 1 cm^{-1} below and 2 cm^{-1} above 1000 cm⁻¹. Magnetic moments were determined on a *Newport-Stanton Gouy* balance.

Results and Discussion. – The IR. spectra of the α -thenoyl-trifluoroacetonate complexes are depicted in Figs. 1 and 2 and the frequencies listed in Table 1. No crystallographic studies have been made on these complexes. Like their acetylacetonate analogues, the metal(II) derivatives are isolated as the dihydrates except for the Ca^{II} and Cu^{II} compounds. *Trans*-octahedral conformation has been established [5] for the acetylacetonate dihydrates and is presumed for the α -thenoyl-trifluoroacetonate dihydrates. Certainly, none of the complexes [M(TTA)₂(H₂O)₂] exhibits any spectral differences which could be ascribed to isomerism and their spectral band patterns are practically identical with those of the octahedral [M(TTA)₃] compounds.

Dehydration of the dihydrates is readily effected by moderate heating under reduced pressure, except for the thermolabile Fe^{II} complex dihydrate. The anhydrous complexes (except for that of copper) yield spectra which are practically identical (with respect to band frequencies and intensities) with those of the dihydrates. This suggests that they are analogous with the anhydrous metal(II) acetylacetonates [5] in being correctly formulated as polynuclear octahedral species, $[M(TTA)_2]_n$, n > 1, already shown for $[Ni(TTA)_2]$ by its electronic spectrum [2]. Even $[Ca(TTA)_2]$ yields an IR. spectrum consistent with this structure and there is evidence [6] that other $Ca^{II} \beta$ -keto-enolates are probably not tetrahedral monomers and the Ca^{II} ion is

нтта	MA AAA MAAAAA MAA AAM
[Ca(TTA) ₂]	ha Andra Man A Man
[Mn(TTA) ₂] _n	Mm AAAMAMMAA MAMA
[Fe{TTA}2(H2O)2]	MM AMMAMAA MMA
[Co(TTA) ₂] _n	Mrs Arran M Arm
[Ni (T TA) ₂] _n	Mr. And mAn A Maha
[Cu(TTA) ₂]	Mrs Anna An A May
[Zn(TTA) ₂] _n	Mrs ARAMAR A MM
-	
[Sc(TTA)]	An AMAMAM MA MAM
{V(TTA) ₃]	An Arran man A Man
{Cr (TTA) ₃]	An Ammara Ma A Mah
[Mn(TTA) ₃]	MM AAAAAAA MAA
[Fe(TTA) ₃]	Mr Arman M A MM
[Ga(TTA) ₃]	An AMAMAMA AMA
	1600 1400 1200 1000 800 FREQUENCY (cm ¹)

Fig. 1. Infrared spectra of thenoyltrifluoroacetone complexes, 1600-700 cm⁻¹

known [7] to form the octahedral species K[Ca(acetylacetonate)₃] [6]. The spectrum of the Cu^{II} complex exhibits some features which indicate that it probably has the square planar configuration established [5] for Cu^{II} acetylacetonate, *viz.* a unique strong band at 556 cm⁻¹, splitting of the ligand band near 530 cm⁻¹ and reversal of the relative intensities of the two bands near 1600 cm⁻¹.

The far IR. spectra of the anhydrous and hydrated metal(II) complexes reveal that four bands exhibit significant sensitivity to the nature of the co-ordinated metal ion and would, on this basis alone [7], be assigned to more or less pure M–O stretching vibrations. Although metal-ion sensitivity has frequently been used to assign metal-ligand vibrations, we have recently shown [8] that in a series of isostructural complexes of first transition series ions, the shift in ν M–L follows the order of crystal field

Fig. 2. Infrared spectra of thenoyltrifluoroacetone complexes, 700-300 cm⁻¹

stabilization energies (CFSE.'s), for which those pertaining to the complexes studied here are given in Table 2. These have been derived from the known relationships [9]

$$CFSE. = - (4 n_t - 6 n_e) Dq$$
(1)

and
$$10 Dq = fg$$
 (2)

whence CFSE. =
$$-(0.4 n_t - 0.6 n_e) fg$$
, (3)

Assignment	ر مرر			thienyl ring	stretch			يىل 1 يىل ₽		لتا ر.		SC H in alone		&CH in-plane thienyl		&C—H in-plane thienyl		AC_H out of alone thienvl	oci out-ot-prant month	C-CF ₃	$\delta C - H$ out-of-plane thienyl	$\delta \mathrm{C-\!\!\!-} \mathrm{H}$ out-of-plane chelate	••ر ربع		C.E.	C.T.3
Ga	1592 1583	1553]	1526	1410	1368	1358	1320	1303	1263)	1236	1203)	1146	1133 (1086	1070	1043	1019	939	864 J	852	(3797E)	775	754	729 [704)	(069
Fe	1580 1580	1550	1517	1411	1362		1320	1298	1258	1235	1202	1 149		1085	1068	1042	1019	938	864	850	797	776	755	725	696	691
Mn	1585	1547	1524	1406	1369	1354	1319	1299	1260	1235	1200	1165	1140	1087	1067	1035	1013a)	936e)	862	850	799r)	774	754	736i)	697	687
c	1600 1570	6/c1 1549	1515	1410	1363	1354	1323	1300	1260	1236	1203	1150		1086	1070	1043	1021	940	864	850	797	778	754	728	705	694
$[A]_{3}$	1604 1575	1541	1508	1409	1367	1355	1319	1304	1258	1235	1203	1160	1140	1088	1067	1042	1013	937	862	850	801	774	753	731	697	690
[M(TT Sc	1603 1504	1550 1550	1517	1411	1363	1354	1319	1297	1258	1235	1197	1151	1135	1084	1068	1042	1022	940	868	850	800	773	755	729	6969	690
Zn	1610	1541	1516	1414	1359	1353	1312		1263	1236	1196	1150	1130	1087	1065	1045	1010	934	862	851	793	774	752	729	702	689
Ni	1608 1504	1544 1548	1509	1415	1360	1354	1312		1260	1237	1196	1152	1133	1085	1065	1045	1011	937	862	850	791	776	752	729	706	169
Co)2] Co	1608 1504	1544 1544	1512	1414	1360	1351	1313		1261	1236	1194	1150	1132	1085	1065	1040	1009	935	862	851	793	774	752	729	703	690
ſA) ₂ (H _i Fe	1603 1503	1540 1540	1508	1415	1359	1353	1310		1258	1236	1195	1149	1140	1085	1064	1044	1010	936	862	850	794	773	754	729	701	689
[M(T] Mn	1610 1506	1541	1515	1413	1358	1351	1306		1260	1236	1194	1152	1133	1085	1066	1038	1011	935	864	852	794	774	752	724	701	689
Zn	1611 1505	1551	1516	1413	1360	1352	1310		1261	1236	1196	1152	1135	1085	1065	1041	1010	935	863	851	793	775	752	729 (704	691
Сп	1600 1578	1548 1548	1514	1409	1364	1358	1328	1299	1263	1236	1190	1155		1087	1069	1038	1020	943	866	852	798	617	756	726h	708	698
Ni	1606 1570	1548 1548	1519	1414	1365	1352	1310		1259	1235	1195	1149	1139	1084	1065	1044	1012) 938	864	840) 802 ^e	775	753	724	707	689
S	1607 1505	1548 1548	1509	1415	1368	1355	1310		1255	1236	1196	1151	1139	1085	1065	1043	1011	933 ^b	862	845	802d	774	750	728	703	689
$[A)_2]_n$ Mn	1609 1504	1542 1542	1519	1412	1369	1357	1301		1259	1236	1194	1150	1130	1082	1064	1036	1000	938	871	845	800	773	755	723	696	689
[M(T1 Ca	1603 1504	1544	1516	1414	1369	1353	1302		1257	1235	1195	1150	1132	1084	1063	1038	1010	935	865	851	794	770	752	727	697	686

Table 1. Vibrational frequencies of metal α -thenoyl-trifluoroacetonates (cm⁻¹)

M(TT	A),]n					[]M(T]	A),(H,	O),]			[M(TT	$[A]_{s}$					Assignment
6 3	Mn	Co	ï	Cu	Zn	Mn	Fe	Co	.N	Zn	Sc	Λ	C	Mn	Fe	Ga)
646	650	657	664	675	659	653	654	658	663	655	645	657	665	667 653	652	660	$_{vMn-O}^{(n-M)_{1}}$
610	610	614	616	616	615	612	612	615	616	614	609	613	620		611	615	chelate ring def.
585	591	591	592	604	596	590	591	591	591	591	595	597	602	601	593	595	$(pM-O)_2$
562	563	565	569	563 531	560	570	566	563	563 ·	562	563 533	568 540	565 552	565 539	565 530	564 540	${ m CF}_{ m 3}$ $(v{ m M}-{ m O})_{ m 3}$
521	525	525	523	522	523	523	525	522	523	521	520	530	520	525 505	520	523	CF ₃ vMn—O
496	495	495	495	495	495	500	500	495		490	495	495	495	495	495	490	CF ₃
470	462	465	465	463	463	465	465	464	465	462	465	464	465	464	465	464	thienyl
369	387	396	403	556	389	382	386	395	407	384	367	396	408	410 389	381	393	$(pM-O)_4$ pMn-O
319	328	335	342	356	330	300	305	311	314	300	334	344	346	331 312	340	357	$(vM-O)_5$ vMn-O
													337				
Mean (720, ¹)	of doul 740 an	blet at: rd 732 c	a) 102: :m-1	3 and 1	1003, b)	935 ai	1d 930,	c) 939	and 93	13, d) 8.	11 and	792, e)	814 ar	id 790,	f) 803 .	and 79.	5, 8) 802 and 794, h) 7

М	Con-	Calcu	lated	Found	1	μeff	g	Crys	tal field s	tabili-	$(\nu - \nu_0)$) (M (.))
	ation	%C	%н	%C	%н	(289K B.M.	kK	Dq	f	kK ^a)	(#M=0 cm ⁻¹	cm ⁻¹
[M(T	ΓA) ₂] _n											
Ca	d^0	39.8	1.7	39.9	1.8	-	_	0	0	0	0	0
Mn	d^{5}	38.6	1.6	38.3	1.5	5.51	8.5	0	0	0	0	0
Co	d^7	38.3	1.6	38.0	1.5	4.99	9.3	8	7.44	8.93	4	8
Ni	d^8	38.4	1.6	38.0	1.7	-	8.9	12	10.68	12.82	9	15
Cu	d^{9}	38.0	1.6	38.0	1.8	-	12.0	6	7.20	8.64	18	167
Zn	d^{10}	37.9	1.6	37.7	1.5		—	0	0	0	0	0
[M(T	$\Gamma A)_2(H_2$	$O)_2$										
Mn	d^5	36.0	2.3	35.2	2.2	5.94	8.5	0	0	0	0	0
Fe	d^{6}	36.0	2.3	35.0	2.4	5.30	10.0	4	4.00	4.80	1	4
Co	d^7	35.8	2.3	35.9	2.4	4.86	9.3	8	7.44	8.93	4	12
Ni	d^8	35.8	2.3	36.1	2.6	~	8.9	12	10.68	12.82	9	24
Zn	d^{10}	35.3	2.2	35.4	2.1	-	-	0	0	0	0	0
[M(T	ГА) ₃ ј											
Sc	d^0	40.7	1.7	41.0	2.1	_	_	0	0	0	0	0
v	d^2	40.4	1.7	40.6	1.8	_	18.6	8	14.88	17.86	9	24
Cr	d^3	40.3	1.7	41.1	2.1	_	17.0	12	20.40	24.48	16	33
Mn	d^4	4 0. 1	1.7	40. 1	1.8	6.16	21.0	6	12.60	15.12	9b)	21 °)
Fe	d^5	4 0. 1	1.7	39.2	1.9	5.89	14.0	0	0	0	0	0
Ga	d^{10}	39.3	1.7	39,1	1.7	-		0	0	0	0	0

Table 2. Analytical, magnetic moment and CFSE. data on metal α -thenoyl-trifluoroacetonates

^a) Assuming $f(TTA)_3 = f(acetylacetonate)_3 = 1.2$ [9].

^b) ν Mn—O taken as mean of bands at 667 and 653 cm⁻¹.

c) ν Mn—O taken as mean of bands at 410 and 389 cm⁻¹.

where n_t and n_e are the numbers of t_{2g} and e_g electrons and eq. (2) represents Jørgensen's factorization of the crystal field parameter 10 Dq into its metal ion (g) and ligand (f) components. Using available [9] values of g, the CFSE.'s may be calculated in terms of f which is a constant for each of the three series of complexes studied. A prerequisite to calculation of the CFSE.'s is a knowledge of the spin states of the d^4-d^7 ions in the complexes. The room temperature magnetic moments (Table 2) reveal that they all have high spin configuration, in common with the corresponding acetylacetonates [10].

The band exhibiting maximum metal sensitivity (and therefore assigned as the least-coupled ν M-O) is the intense band near 400 cm⁻¹, a region where the free ligand, HTTA, does not absorb. The variation of the frequency of this band with *d*-orbital population is shown in Fig. 3. The frequencies for the complexes of ions with zero CFSE., *viz.* those of the d^0 , spin-free d^5 and d^{10} ions, Ca^{II}, Mn^{II} and Zn^{II}, form an interpolation line which is used to estimate the frequencies (ν_0) which would be realized in the absence of crystal field stabilization. The difference between ν_0 and the observed frequencies (ν) therefore represents that part of ν M-O which is attributable to the CFSE. The values of ($\nu - \nu_0$) correlate very well with the CFSE. values

Fig. 3. Relationship between frequency and d-orbital population for the most sensitive vM-O band, $(vM-O)_4$

The dashed line is the interpolation line and the vertical lines represent $(v - v_0)$. The point for Mn^{III} is taken as the mean of the bands at 410 and 389 cm⁻¹.

except for the Cu^{II} complex (Table 2). Precisely similar conclusions pertain to the dihydrates and generally to the less-sensitive metal-ligand bands.

Of the unique features in the spectrum of the Cu^{II} complex, the most striking is the strong band at 556 cm⁻¹, which clearly (Fig. 2) corresponds with those near 400 cm⁻¹ in the spectra of the other complexes. The abnormally high ν Cu–O value is not unexpected if the Cu^{II} complex is the only 4-co-ordinate complex of the series since the bonding capacity is distributed over four bonds rather than six. A similar situation exists [11] for the complexes: tetrahedral monomeric [CoCl₂py₂] (ν Co–N = 252 cm⁻¹) and octahedral polymeric [CoCl₂py₂]_n (ν Co–N = 224 cm⁻¹). The high ν Cu–O value is also expected on theoretical grounds since, of the metal(II) ions studied, only Cu^{II} is subject to strong *Jahn-Teller* distortion. The extra stabilization arising from this distortion is not included in the CFSE. given in Table 2.

The spectra of the $[M(TTA)_3]$ complexes reveal five significantly metal-sensitive bands. The values of $(\nu - \nu_0)$ again exhibit a well-defined correlation with the CFSE.'s. The unique character of the spectrum of the spin-free d^4 Mn^{III} complex is apparent from Fig. 2 and is distinguished by a splitting of the metal-sensitive bands. Of the trivalent ions studied, Mn^{III} is the only one for which strong *Jahn-Teller* distortion is expected. Crystallographic studies of Mn^{III} acetylacetonate reveal tetragonal structure although the static distortion is very small [4] [12]. Assuming similar distortion in [Mn(TTA)₃], splitting of the ν Mn–O bands is a logical result of the existence of short and long Mn–O bond lengths. The mean value of ν Mn–O for each metal-sensitive band is usually in the order expected from the CFSE.'s: Cr > Mn > Fe.

In the complexes of ions with zero CFSE., the ν M-O values generally exhibit an increase in the order Ca \leq Mn \leq Zn and Sc \leq Fe \leq Ga. This is consistent with the expected effect on the frequencies of the ionic radius contraction through the series but is the opposite of that expected from the relative ionic masses. Clearly the former outweighs the latter in determining the frequency order. Since the variation in ionic mass for the transition series ions is relatively small, the contribution of the mass effect to the frequencies is insignificant.

In Table 1, tentative vibrational assignments, for bands other than metal-ligand vibrations, have been made with the aid of the extensive theoretical and empirical studies on the IR. spectra of metal β -keto-enolates. Electron delocalization in the chelate ring leads to extensive coupling so that few bands represent pure vibrations. Earlier empirical assignments [13] of the first two bands below 1700 cm⁻¹ in metal acctylacetonates to (predominately) vC—O and vC—C respectively, were reversed [14] by a normal co-ordinate treatment of the Cu^{II} complex, but subsequently supported by a more refined treatment [15] and by ¹⁸O-labelling of the carbonyl oxygen [16]. In phenyl-substituted β -keto-enolates a third band appears near 1600 cm⁻¹, which has been ascribed [17] to the first aromatic ring stretching vibration, since it is insensitive to the nature of the co-ordinated ion and its frequency is close to that observed for monosubstituted benzenes. The first heterocyclic ring stretching vibration is at a much lower frequency (1523 \pm 9 cm⁻¹ [18] [19]) and bands are observed in this region in the spectra of HTTA and its complexes. Unlike phenyl-substituted β -keto-enolates, there are therefore no complications from overlap of these bands with ν C—O and ν C—C and the assignment is comparatively straightforward. Further thienyl ring stretching vibrations occur at 1442 \pm 12 and 1354 \pm 7 cm⁻¹ and thienyl C—H deformation frequencies are at 1081 \pm 3, 1043 \pm 7, 925 \pm 8, 853 \pm 7 and 800 cm⁻¹ [18]. Bands near all of these frequencies are observed in the spectra of HTTA and its chelates. Vibrational bands originating in the CF_{a} -group are assigned by comparison with the spectrum of CF_{4} [20] and normal coordinate studies of tri- and hexa-fluoroacetylacetonates [21].

This work was supported by research grants provided by the University of Cape Town and the South African Council for Scientific and Industrial Research. We thank Dr. K. G. Führ for assistance with the microanalyses. We wish to thank Professors G. Schwarzenbach, G. Anderegg and W. Schneider for hospitality extended to one of us (D.A.T.) while on leave for study at the Laboratorium für anorganische Chemic, Eidg. Technische Hochschule Zürich, during 1971.

BIBLIOGRAPHY

- H. Irving & D. N. Edgington, J. inorg. nucl. Chemistry 15, 158 (1960); W. R. Walker & N. C. Li, J. inorg. nucl. Chemistry 27, 411 (1965).
- [2] G. N. Rao & N. C. Li, J. inorg. nucl. Chemistry 28, 2931 (1966).
- [3] E. W. Berg & J. T. Truemper, J. physic. Chemistry 64, 487 (1960).

- [4] T. S. Davis, J. P. Fackler & M. J. Weeks, Inorg. Chemistry 7, 1994 (1968).
- [5] J. P. Fackler, Progr. inorg. Chemistry 7, 361 (1966).
- [6] R. D. Hancock & D. A. Thornton, J. South African chem. Inst. 23, 71 (1970).
- [7] K. Nakamoto, C. Udovich & J. Takemoto, J. Amer. chem. Soc. 92, 3973 (1970).
- [8] R. D. Hancock & D. A. Thornton, J. mol. Structure 4, 361 (1969); J. M. Haigh, R. D. Hancock, L. G. Hulett & D. A. Thornton, ibid. 4, 369 (1969).
- [9] B. N. Figgis, "Introduction to Ligand Fields", p. 244, Interscience, New York 1966.
- [10] B. N. Figgis & J. Lewis, Progr. inorg. Chemistry 6, 37 (1964).
- [11] R. J. H. Clark & C. S. Williams, Inorg. Chemistry 4, 350 (1965).
- [12] A. Forman & L. E. Orgel, Mol. Physics 2, 362 (1959).
- [13] L. J. Bellamy & R. F. Branch, J. chem. Soc. 4491 (1954).
- [14] K. Nakamoto & A. E. Martell, J. chem. Physics 32, 588 (1960).
- [15] G. T. Behnke & K. Nakamoto, Inorg. Chemistry 6, 433 (1967).
- [16] S. Pinchas, B. L. Silver & I. Laulicht, J. chem. Physics 46, 1506 (1967).
- [17] R. D. Hancock & D. A. Thornton, J. mol. Structure 4, 377 (1969).
- [18] A. R. Katritzky & A. J. Boulton, J. chem. Soc. 3500 (1959).
- [19] A. Hidalgo, J. Physique Radium 16, 366 (1955).
- [20] P. J. H. Woltz & A. H. Nielsen, J. chem. Physics 20, 307 (1952).
- [21] K. Nakamoto, Y. Morimoto & A. E. Martell, J. physic. Chemistry 66, 346 (1962).

245. Spectroscopic Evidence for Symmetry-Restricted π -Interaction in Vanadyl β -Keto-enolates

by J. M. Haigh and D. A. Thornton¹)

Department of Chemistry, University of Cape Town, Rondebosch, Cape, South Africa

(14. V. 71)

Summary. Theoretical treatments of the distorted square pyramidal co-ordination observed in vanadyl β -keto-enolates predict restricted interligand conjugation and minimal π -interaction in the oxovanadium-ligand bonds. The effects of ligand substitution on the vibrational and electronic spectra of vanadyl β -keto-enolates yield evidence that strong σ -bonding and ionic contributions are chiefly responsible for the strong vanadium-ligand bonding.

Introduction. – Elsewhere [1] we were able to achieve a qualitative separation of the relative contributions of metal-ligand $(M \to L)$ and ligand-metal $(L \to M)$ π -interaction in transition metal(III) β -keto-enolates by examination of the electronic, IR. and NMR. spectroscopic data from these octahedral complexes, in which the metal d_e orbitals have full π -function. Vanadyl β -keto-enolates have distorted square pyramidal structure I, the vanadium atom being displaced from the basal plane of the four β -keto-enolate oxygen atoms towards the apical multiply-bonded oxygen atom [2] [3] [4]. Compared with regular square pyramidal structure, this distortion leads to some loss of π -function by the vanadyl $d\pi$ orbitals (d_{xz}, d_{yz}) and severely restricted interligand conjugation [5]. The latter implies a considerable limitation in the capacity of the substituents for resonance interaction with the V-O and V=O bonds. Quite apart from such symmetry constraints to π -interaction,

¹) On leave during 1971 for study at the Laboratorium für anorganische Chemie, Eidg. Technische Hochschule Zürich.